Nonlinear Neumann Problems for Fully Nonlinear Elliptic PDEs on a Quadrant
نویسندگان
چکیده
We consider the nonlinear Neumann problem for fully elliptic PDEs on a quadrant. establish comparison theorem viscosity sub- and supersolutions of problem. The crucial argument in proof is to build $C^{1,1}$ test function which takes care boundary condition. A similar has been treated general $n$-dimensional orthant by Biswas et al. [SIAM J. Control Optim., 55 (2017), pp. 365--396], where functions ($H_i$ main text) describing condition are required be positively one-homogeneous, result this paper removes positive homogeneity two dimensions. An existence solutions also presented.
منابع مشابه
Overdetermined problems for fully nonlinear elliptic equations
We prove that the existence of a solution to a fully nonlinear elliptic equation in a bounded domain Ω with an overdetermined boundary condition prescribing both Dirichlet and Neumann constant data forces the domain Ω to be a ball. This is a generalization of Serrin’s classical result from 1971.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
COLLOCATION METHODS FOR CONTINUATION PROBLEMS IN NONLINEAR ELLIPTIC PDEs
A new class of collocation methods for nonlinear elliptic partial diierential equations is described in the context of numerical continuation studies. It is shown how the methods are well-suited for a nested dissection solution algorithm , thereby reducing computational complexity. Numerical results are given to illustrate the accuracy of the methods.
متن کاملBoundary Value Problems for some Fully Nonlinear Elliptic Equations
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 with boundary ∂M . We denote the Ricci curvature, scalar curvature, mean curvature, and the second fundamental form by Ric, R , h, and Lαβ , respectively. The Yamabe problem for manifolds with boundary is to find a conformal metric ĝ = eg such that the scalar curvature is constant and the mean curvature is zero. The boundary is call...
متن کاملRemarks on viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients
We study the comparison principle and interior Holder continuity of viscosity solutions of F (x; u;Du;D 2 u) +H(x;Du) = f; where F satis es the standard \structure condition" and H has a superlinear growth with respect to Du. Following Ca arelli, Crandall, Kocan and Swi ech [3], we rst present the comparison principle between L p -viscosity subsolutions and L p -strong supersolutions. We next ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Mathematical Analysis
سال: 2022
ISSN: ['0036-1410', '1095-7154']
DOI: https://doi.org/10.1137/21m1444199